Instead of setting $\hat{V} = cor(Z_{null})$ we set $\hat{V} = I$
Input data is generated by procedures documented here. Code chunk below runs the workflow.
!sos run analysis/20171002_MASH_V8.ipynb mash --vhat 0
library(lattice)
library(ggplot2)
library(colorRamps)
library(mashr)
library(repr)
res = readRDS('~/Documents/GTExV8/MASH/GTExV8.ciseQTL.4MASH.xtx.K5.P3.V0.mash_model.rds')
res$result = readRDS('~/Documents/GTExV8/MASH/GTExV8.ciseQTL.4MASH.xtx.K5.P3.V0.mash_posterior.rds')
The log-likelihood of fit is:
get_loglik(res)
Here is a plot of weights learned.
options(repr.plot.width=12, repr.plot.height=4)
barplot(get_estimated_pi(res), las = 2, cex.names = 0.7)