Here I change coverage from default 95% to various other numbers for susie CS and check the proportion of "false" CS.
The computation is coded in the coverage
workflow of this notebook.
%revisions -s
%cd ~/GIT/github/mvarbvs/dsc
print_summary = function(dat) {
res = c(0,0)
for (level in c(0.01, 0.05, 0.1, 0.15, 0.2, 0.25)) {
s = as.character(level*100)
d = do.call(rbind, lapply(1:length(dat), function(i) dat[[as.character(i)]][[s]]))
d = colSums(d)
res = rbind(res, c(level, d[2]/(d[1]+d[2])))
}
res = data.frame(res[-1,])
colnames(res) = c ('1 - coverage', 'false discovery proportion')
res
}
var(Y)
¶dat = readRDS('susie_comparison/Coverage_0623_estvar_false.rds')
print_summary(dat)
est_var
¶dat = readRDS('susie_comparison/Coverage_0623_estvar_true.rds')
print_summary(dat)