mthess
and atlas
on a small scale simulation¶./fixed_mix.dsc --target mthess -o mthess_20200526 -s existing -e ignore -c 38 --n_dataset 200 &> mnm_20200526.log
This pipeline ran for 3 days with a couple of mthess
instances dragging behind. I ended up having to terminate it and work with what we have.
[global]
parameter: cwd = path('~/GIT/github/mvarbvs/dsc/mnm_prototype')
parameter: data_dir = path('mthess_20200526/')
parameter: date = '0526'
def fmtP(x):
return str(x).replace(".", "p")
I'll for now only extract file names and get the values as needed after.
sos run 20200530_mthess_Benchmark.ipynb pip:1
# Extract meta info
[pip_1,roc_1,global_pip_1]
output: f'{cwd}/{data_dir}/PIP_comparison_{date}.pips_meta.rds'
R: expand = '${ }', workdir = cwd
dat = dscrutils::dscquery(${data_dir:r}, target = c("small_data.dataset", "simulate", "method", "method.resid_method"), module.output.files=c("simulate", "method"), group = c("method: mnm_oracle mnm_naive mnm_identity mnm_shared mthess atlasqtl", "mnm:", "mnm_missing:", "simulate: artificial_mixture_small"), ignore.missing.file=T)
print(dim(dat))
# remove bad files
bad_files = vector()
for (f in dat$method.output.file) {
if (!file.exists(paste0("${data_dir}/", f,'.rds'))) bad_files = append(bad_files, f)
}
dat = dat[which(!(dat$method.output.file %in% bad_files)),]
print(dim(dat))
dat$method_rename = NA
dat$method_rename[which(!is.na(dat$method.resid_method))] = paste(dat$method[which(!is.na(dat$method.resid_method))], dat$method.resid_method[which(!is.na(dat$method.resid_method))], sep = '+')
dat$method_rename[which(is.na(dat$method.resid_method))] = dat$method[which(is.na(dat$method.resid_method))]
saveRDS(dat, ${_output:r})
%cd ~/GIT/github/mvarbvs/dsc/mnm_prototype/mthess_20200526
dat = readRDS('PIP_comparison_0526.pips_meta.rds')
head(dat)
unique(dat$simulate)
sos run 20200530_mthess_Benchmark.ipynb pip:1-2
sos run 20200530_mthess_Benchmark.ipynb global_pip:1-2
# Extract PIP
[pip_2,roc_2]
parameter: simulate_method = ['artificial_mixture_small']
parameter: subset = -1
input: for_each = 'simulate_method'
output: f'{cwd}/{data_dir}/PIP_comparison_{date}.{_simulate_method}{("." + str(subset)) if subset>0 else ""}.pips.rds'
R: expand = '${ }', workdir = f'{cwd}/{data_dir}'
meta = readRDS(${_input:r})
# apply some filters
meta = meta[which(meta$simulate == "${_simulate_method}"),]
if (${subset}<nrow(meta) && ${subset}>0) {
set.seed(999)
meta = meta[sample(1:nrow(meta))[1:${subset}],]
}
# now collect matrices for each method, of two columns: pip and true_coef
res = list()
for (i in 1:nrow(meta)) {
true_coef = as.integer(readRDS(paste0(meta[i,]$simulate.output.file, '.rds'))$meta$true_coef != 0)
# make it a vector
true_coef = c(true_coef)
method = meta[i,]$method_rename
if (method %in% c("mthess", 'atlasqtl')) {
if (method == 'atlasqtl') {
pip = readRDS(paste0(meta[i,]$method.output.file, '.rds'))$result$gam_vb_completed
} else {
pip = readRDS(paste0(meta[i,]$method.output.file, '.rds'))$result$pip_conditions
}
} else {
tmp = readRDS(paste0(meta[i,]$method.output.file, '.rds'))$result
# approximate per condition PIP using condition specific 1 - lfsr
pip = 1 - mvsusieR::mvsusie_get_lfsr(tmp)
}
# PIP is matrix of P (SNPs) by R (conditions); now make it a vector
pip = c(pip)
if (!(method %in% names(res))) {
res[[method]] = list(pip = pip, truth = true_coef)
} else {
res[[method]]$pip = append(res[[method]]$pip, pip)
res[[method]]$truth = append(res[[method]]$truth, true_coef)
}
if (i%%100==0) print(i)
}
for (method in unique(meta$method_rename)) {
res[[method]] = do.call(cbind, res[[method]])
}
saveRDS(res, ${_output:r})
[global_pip_2]
parameter: simulate_method = ['artificial_mixture_small']
parameter: subset = -1
input: for_each = 'simulate_method'
output: f'{cwd}/{data_dir}/PIP_comparison_{date}.{_simulate_method}{("." + str(subset)) if subset>0 else ""}.global.pips.rds'
R: expand = '${ }', workdir = f'{cwd}/{data_dir}'
meta = readRDS(${_input:r})
# apply some filters
meta = meta[which(meta$simulate == "${_simulate_method}"),]
if (${subset}<nrow(meta) && ${subset}>0) {
set.seed(999)
meta = meta[sample(1:nrow(meta))[1:${subset}],]
}
# now collect matrices for each method, of two columns: pip and true_coef
res = list()
for (i in 1:nrow(meta)) {
true_coef = as.integer(rowSums(readRDS(paste0(meta[i,]$simulate.output.file, '.rds'))$meta$true_coef) != 0)
method = meta[i,]$method_rename
if (method %in% c("mthess", 'atlasqtl')) {
if (method == 'atlasqtl') {
pip = apply(readRDS(paste0(meta[i,]$method.output.file, '.rds'))$result$gam_vb_completed, 1, sum)
} else {
pip = apply(readRDS(paste0(meta[i,]$method.output.file, '.rds'))$result$pip_conditions, 1, sum)
}
} else {
pip = readRDS(paste0(meta[i,]$method.output.file, '.rds'))$result$pip
}
if (!(method %in% names(res))) {
res[[method]] = list(pip = pip, truth = true_coef)
} else {
res[[method]]$pip = append(res[[method]]$pip, pip)
res[[method]]$truth = append(res[[method]]$truth, true_coef)
}
if (i%%100==0) print(i)
}
for (method in unique(meta$method_rename)) {
if (!is.null(res[[method]])) res[[method]] = do.call(cbind, res[[method]])
}
saveRDS(res, ${_output:r})
sos run 20200530_mthess_Benchmark.ipynb pip:1-4
sos run 20200530_mthess_Benchmark.ipynb global_pip:1-4
# Calibration data
[pip_3,global_pip_3]
parameter: bin_size = 10
output: f'{_input:nn}.pip_evaluation.rds'
R: expand = '${ }', workdir = cwd
dat = readRDS(${_input:r})
bins = cbind(seq(1:${bin_size})/${bin_size}-1/${bin_size}, seq(1:${bin_size})/${bin_size})
pip_cali = list()
for (method in names(dat)) {
pip_cali[[method]] = matrix(NA, nrow(bins), 3)
for (i in 1:nrow(bins)) {
data_in_bin = dat[[method]][which(dat[[method]][,1] > bins[i,1] & dat[[method]][,1] < bins[i,2]),]
if(!is.null(dim(data_in_bin))) {
pip_cali[[method]][i,1] = sum(data_in_bin[,1])
pip_cali[[method]][i,2] = sum(data_in_bin[,2])
pip_cali[[method]][i,3] = nrow(data_in_bin)
} else {
pip_cali[[method]][i,] = c(0,0,0)
}
}
}
for (method in names(dat)) {
pip_cali[[method]][,c(1,2)] = pip_cali[[method]][,c(1,2)] / pip_cali[[method]][,3]
}
saveRDS(pip_cali, ${_output:r})
# Calibration plot
[pip_4,global_pip_4]
depends: R_library('cowplot'), executable('convert')
output: f'{_input:n}.png'
R: expand = '${ }', workdir = cwd
library(ggplot2)
library(cowplot)
rename = list('mnm_oracle+oracle' = 'Oracle prior and residual', 'mnm_oracle+flash' = 'Oracle prior', 'mnm_naive+oracle' = 'Default prior oracle residual',
'mnm_naive+flash' = 'Default prior', 'mnm_ed+oracle' = 'EB prior oracle residual', 'mnm_ed+flash' = 'EB prior',
'mnm_identity+oracle' = 'Random effects prior oracle residual', 'mnm_identity+flash' = 'Random effects prior',
'mnm_shared+oracle' = 'Fixed effect prior oracle residual', 'mnm_shared+flash' = 'Fixed effect prior', atlasqtl = 'atlasqtl', mthess = 'mthess')
dot_plot = function(dataframe) {
ggplot(dataframe, aes(x=mean_pip, y=observed_freq)) +
geom_errorbar(aes(ymin=observed_freq-se, ymax=observed_freq+se), colour="gray", size = 0.2, width=.01) +
geom_point(size=1.5, shape=21, fill="#002b36") + # 21 is filled circle
xlab("Mean PIP") +
ylab("Observed frequency") +
coord_cartesian(ylim=c(0,1), xlim=c(0,1)) +
geom_abline(slope=1,intercept=0,colour='red', size=0.2) +
ggtitle(rename[[name]]) +
expand_limits(y=0) + # Expand y range
theme_cowplot()
}
dat = readRDS(${_input:r})
idx = 0
for (name in names(dat)) {
idx = idx + 1
dat[[name]][,3] = sqrt(dat[[name]][,2] * (1 - dat[[name]][,2]) / dat[[name]][,3]) * 2
dat[[name]] = as.data.frame(dat[[name]])
colnames(dat[[name]]) = c("mean_pip", "observed_freq", "se")
pdf(paste0(${_output:nr}, '_' , idx, '.pdf'), width=3, height=3, pointsize=16)
print(dot_plot(dat[[name]]))
dev.off()
system(paste0("convert -density 120 ", ${_output:nr}, '_' , idx, '.pdf', " ", ${_output:nr}, '_' , idx, '.png'))
}
files = paste0(${_output:nr}, '_', seq(1:idx), '.png')
cmd = paste('convert +append', paste(files, collapse=" "), ${_output:r})
system(cmd)
system(paste('rm -f', paste(files, collapse=" ")))
%preview PIP_comparison_0526.artificial_mixture_small.pip_evaluation.png
%preview PIP_comparison_0526.artificial_mixture_small.global.pip_evaluation.png
sos run 20200530_mthess_Benchmark.ipynb roc -s build
sos run 20200530_mthess_Benchmark.ipynb roc --table roc --xlim 0.006 -s build
sos run 20200530_mthess_Benchmark.ipynb global_roc -s build
sos run 20200530_mthess_Benchmark.ipynb global_roc --table roc --xlim 0.006 -s build
# Data for ROC
[roc_3]
pip_cutoff = 0.05
output: f'{_input:nn}.roc.rds'
R: expand = '${ }', workdir = cwd
roc_data = function(d1, cutoff = c(${pip_cutoff}, 0.999), connect_org = T) {
grid = 1000
ttv = seq(1:grid)/grid
ttv = ttv[which(ttv>=cutoff[1] & ttv<=cutoff[2])]
rst1 = t(sapply(ttv, function(x) c(sum(d1[,2][d1[,1]>=x]), length(d1[,2][d1[,1]>=x]), sum(d1[,2][d1[,1]>=x]==0))))
rst1 = cbind(rst1, sum(d1[,2]), sum(1-d1[,2]))
rst1 = as.data.frame(rst1)
colnames(rst1) = c('true_positive', 'total_positive', 'false_positive', 'total_signal', 'total_null')
rst2 = as.data.frame(cbind(rst1$true_positive / rst1$total_positive, rst1$true_positive / rst1$total_signal, ttv))
rst3 = as.data.frame(cbind(1 - rst1$false_positive / rst1$total_null, rst1$true_positive / rst1$total_signal, ttv))
if (connect_org) {
# make a stair to origin
rst2 = rbind(rst2, c(max(0.995, rst2[nrow(rst2),1]), max(rst2[nrow(rst2),2]-0.01, 0), rst2[nrow(rst2),3]))
rst2 = rbind(rst2, c(1, 0, 1))
rst3 = rbind(rst3, c(1, 0, 1))
}
colnames(rst2) = c('Precision', 'Recall', 'Threshold')
colnames(rst3) = c('TN', 'TP', 'Threshold')
return(list(counts = rst1, pr = rst2, roc = rst3))
}
print("Computing ROC data ...")
roc = list()
dat = readRDS(${_input:r})
for (method in names(dat)) {
print(method)
roc[[method]] = roc_data(dat[[method]])
}
saveRDS(roc, ${_output:r})
dat = readRDS('PIP_comparison_0510.artificial_mixture.global.roc.rds')
names(dat)
# Plot for ROC
[roc_4]
depends: R_library('scam')
parameter: chunks = 0
parameter: smooth = 'FALSE'
parameter: xlim = 0.8
parameter: ylim = 0.8
# Only plot for certain methods
parameter: filter_cond = "method %in% c('mnm_oracle+flash', 'mnm_naive+flash', 'mnm_ed+flash', 'mnm_identity+flash', 'mnm_shared+flash', 'atlasqtl', 'mthess')"
# "pr" or "roc"
parameter: table = "pr" # or, `roc`
if table == "pr":
main = "FDR vs Power"
ylab = "power"
xlab = "FDR"
else:
main = "ROC curve"
ylab = "True Positive"
xlab = "False Positive"
opt = f"lwd = 2, xlim = c(0,{xlim}), ylim = c(0,{ylim})"
output: f'{_input:nn}.{table}.pdf'
R: expand = '${ }'
colors = c('#A60628', '#7A68A6', '#348ABD', '#467821', '#FF0000', '#188487', '#E2A233',
'#A9A9A9', '#000000', '#FF00FF', '#FFD700', '#ADFF2F', '#00FFFF')
dat = readRDS(${_input:r})
library(scam)
create_chunks = function(item, n) {
splitted = suppressWarnings(split(item, 1:n))
return(c(splitted[[1]], splitted[[length(splitted)]][length(splitted[[length(splitted)]])]))
}
make_smooth = function(x,y,subset=${chunks}, smooth = ${smooth}) {
if (smooth) {
if (subset < length(x) && subset > 0) {
x = create_chunks(x, subset)
y = create_chunks(y, subset)
}
dat = data.frame(cbind(x,y))
colnames(dat) = c('x','y')
y=predict(scam(y ~ s(x, bs = "mpi"), data = dat))
}
return(list(x=x,y=y))
}
add_text = function(thresholds, x, y, threshold, color, delta = -0.075) {
idx = which(thresholds == threshold)
text(x[idx] - delta * ${ylim}, y[idx], labels = threshold, col = color, cex=0.8)
points(x[idx],y[idx])
}
rename = list('mnm_oracle+oracle' = 'Oracle prior and residual', 'mnm_oracle+flash' = 'Oracle prior', 'mnm_naive+oracle' = 'Default prior oracle residual',
'mnm_naive+flash' = 'Default prior', 'mnm_ed+oracle' = 'EB prior oracle residual', 'mnm_ed+flash' = 'EB prior',
'mnm_identity+oracle' = 'Random effects prior oracle residual', 'mnm_identity+flash' = 'Random effects prior',
'mnm_shared+oracle' = 'Fixed effect prior oracle residual', 'mnm_shared+flash' = 'Fixed effect prior', atlasqtl = 'atlasqtl', mthess = 'mthess')
labels = vector()
pdf(${_output:r}, width=10, height=10, pointsize=15)
i = 1
for (method in names(dat)) {
if (${filter_cond}) {
yy = make_smooth(1 - dat[[method]]$${table}[,1], dat[[method]]$${table}[,2])
if (i == 1) {
plot(yy$x, yy$y, t="l", col=colors[i], ylab = "${ylab}", xlab ="${xlab}", main = "${main}", bty='l', ${opt})
} else {
lines(yy$x, yy$y, col=colors[i], ${opt})
}
#add_text(dat[[method]]$${table}[,3], yy$x, yy$y, 0.9, colors[i])
add_text(dat[[method]]$${table}[,3], yy$x, yy$y, 0.95, colors[i])
labels[i] = rename[[method]]
i = i + 1
}
}
legend("bottomright", legend=labels, col=colors[1:i], lty=c(1,1,1), cex=0.8)
dev.off()
[global_roc]
sos_run('global_pip:1+global_pip:2+roc:3+roc:4')
%preview PIP_comparison_0526.artificial_mixture_small.roc.pdf -s png
%preview PIP_comparison_0526.artificial_mixture_small.pr.pdf -s png