Multivariate Bayesian variable selection regression

Summarizing EB based mvSuSiE

I have used several other notebooks for simulating and learning priors via EB approach. This notebook puts togather what we have.

EB prior learned for artificial mixture

Here are the weights assigned for this simulation, with 50 conditions.

  1. singleton total 35%
    • singleton_1 has 10% (to be picked up later by ED methods)
    • singleton_2 to singleton_26 has 25% (1% each )
  2. shared total 25%
  3. paired 20% (hopefully picked up by ED methods)
  4. blocked 20% (hopefully picked up by ED methods)

Here is the EB result (using extreme deconvolution), for FLASH, X'X and PCA:

In [1]:
%preview ../dsc/mnm_prototype/mnm_sumstats/artificial_mixture_eb.png
> ../dsc/mnm_prototype/mnm_sumstats/artificial_mixture_eb.png (25.3 KiB):

For GTEx mixture based simulation, I first learned from GTEx V8 data using extreme deconvolution the actual weight and mixture matrices, then use that for simulation. With simulated data I learn again the mixture and their weights using extreme deconvolution. Here is the result for FLASH, PCA and X'X:

In [2]:
%preview ../dsc/mnm_prototype/mnm_sumstats/gtex_mixture_eb.png
> ../dsc/mnm_prototype/mnm_sumstats/gtex_mixture_eb.png (26.7 KiB):

Please checkout this page for more details.

Results from 50 condition simulations

Global PIP calibration for mvSuSiE

In [3]:
%cd ../dsc/mnm_prototype/mnm_20200510
/home/gw/GIT/github/mvarbvs/dsc/mnm_prototype/mnm_20200510

artificial mixture,

In [4]:
%preview PIP_comparison_0510.artificial_mixture.global.pip_evaluation.png
> PIP_comparison_0510.artificial_mixture.global.pip_evaluation.png (65.7 KiB):

GTEx mixture,

In [5]:
%preview PIP_comparison_0510.gtex_mixture.global.pip_evaluation.png
> PIP_comparison_0510.gtex_mixture.global.pip_evaluation.png (66.1 KiB):

ROC

artificial mixture,

In [6]:
%preview PIP_comparison_0510.artificial_mixture.global.roc.pdf -s png
> PIP_comparison_0510.artificial_mixture.global.roc.pdf (15.2 KiB):

GTEx mixture,

In [7]:
%preview PIP_comparison_0510.gtex_mixture.global.roc.pdf -s png
> PIP_comparison_0510.gtex_mixture.global.roc.pdf (15.8 KiB):

PR curve

artificial mixture,

In [8]:
%preview PIP_comparison_0510.artificial_mixture.global.pr.pdf -s png
> PIP_comparison_0510.artificial_mixture.global.pr.pdf (16.8 KiB):
In [9]:
%preview PIP_comparison_0510.gtex_mixture.global.pr.pdf -s png
> PIP_comparison_0510.gtex_mixture.global.pr.pdf (17.5 KiB):

MT-HESS comparisons

Here I simulated artificial mixture of 6 conditions,

  1. singleton total 30%
    • singleton_1, singleton_3, singleton_5 each has 10%
  2. shared total 30%
  3. paired 20%
  4. blocked 20%

I only ran it in 100 replicates (genes), and on 300 variables, because some mt-hess runs takes days to complete.

Results for MT-HESS comparison

Note here I have to work on 1 - condition specific lfsr as a proxy to condition specific PIP reported by MT-HESS.

In [10]:
%cd ../mthess_20200526
/home/gw/GIT/github/mvarbvs/dsc/mnm_prototype/mthess_20200526
In [11]:
%preview PIP_comparison_0526.artificial_mixture_small.pip_evaluation.png
> PIP_comparison_0526.artificial_mixture_small.pip_evaluation.png (64.8 KiB):
In [12]:
%preview PIP_comparison_0526.artificial_mixture_small.roc.pdf -s png
> PIP_comparison_0526.artificial_mixture_small.roc.pdf (14.6 KiB):
In [13]:
%preview PIP_comparison_0526.artificial_mixture_small.pr.pdf -s png
> PIP_comparison_0526.artificial_mixture_small.pr.pdf (15.7 KiB):

Copyright © 2016-2020 Gao Wang et al at Stephens Lab, University of Chicago